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ABSTRACT

Estimation of reflector depth and seismic velocity
from seismic reflection data can be formulated as a gen
eral inverse problem. The method used to solve this
problem is similar to tomographic techniques in med
ical diagnosis and we refer to it as seismic reflection
tomography.

Seismic tomography is formulated as an iterative
Gauss-Newton algorithm that produces a velocity-
depth model which minimizes the difference between
traveltimes generated by tracing rays through the model
and traveltimes measured from the data. The input to
the process consists of traveltimes measured from select
ed events on unstacked seismic data and a first-guess
velocity-depth model. Usually this first-guess model has
velocities which are laterally constant and is usually
based on nearby well information and/or an analysis of
the stacked section. The final model generated by the
tomographic method yields traveltimes from ray tracing
which differ from the measured values in recorded data

by approximately 5 ms root-mean-square.
The indeterminancy of the inversion and the associ

ated nonuniqueness of the output model are both ana
lyzed theoretically and tested numerically. It is found
that certain aspects of the velocity field are poorly de
termined or undetermined.

This technique is applied to an example using real
data where the presence of permafrost causes a near-
surface lateral change in velocity. The permafrost is suc
cessfully imaged in the model output from tomography.
In addition, depth estimates at the intersection of two
lines differ by a significantly smaller amount than the
corresponding estimates derived from conventional pro
cessing.

INTRODUCTION

Estimation of velocity and depth is often an important step
in prospect evaluation in areas where lithology and structure
undergo significant lateral change. Depth estimation is usually
accomplished by converting zero-offset traveltimes, interpreted
from a stacked section, to depth using a velocity field obtained
from a normal-movement (NMO) analysis. In areas with com
plex lateral changes, a depth migration technique may be neces
sary to obtain the correct depth estimate (Lamer et al., 1981).
Both of these methods require an accurate representation of the
root-mean-square (rms) velocity field. However, the stacking
velocities used for such analyses can deviate significantly from
rms velocities because analysis of stacking velocities assumes
that the medium is laterally invariant and that traveltime tra
jectories for reflection events in COP gathers are hyperbolic.

Media vary laterally due to either reflector dip or curvature,
or due to lateral velocity variations, or both. A large portion of
the effect of reflector dip or curvature on the stacking velocity
can be removed approximately by first migrating common-
offset panels with a first-guess velocity function, and then recal
culating the stacking velocity in the migrated common-depth-
point (CDF) gathers (Doherty and Claerbout, 1976). The influ
ence of lateral variations in velocity on the stacking velocity
cannot be corrected this way. For lateral variations in velocity
whose wavelength is longer than a cable length (the maximum
spread offset), the smoothed stacking velocity is usually a good
representation of the rms velocity. Velocity variations on the
scale of a cable length or shorter can produce large differences
between the stacking velocity and the rms velocity. These differ
ences are sometimes referred to as stacking-velocity anomalies
(Pollet, 1974).

A conventional residual-statics approach can often correct
for near-surface variations in velocity on a scale shorter than a
cable length. However, the spatial resolution of statics analyses
decreases rapidly beyond one cable length (Wiggins et al.,
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1976). Another method was proposed in Lynn and Claerbout
(1982) which inverts the observed stacking velocity and zero-
offset traveltime, as a function of common midpoint, to obtain
an approximate true-vertical rms velocity function. This
method is limited to velocity variations longer and shallower
than a cable length.

Here we present a method which uses traveltimes to selected
events in unstacked seismic reflection data to image velocity
anomalies above and between these events and to infer their

depths. The depths are determined even in the presence of
reflector dip or curvature and lateral changes in velocity. When
thus determined, the depths are those that would be found from
depth migration using the correct rms velocity field. With some
limitations (to be discussed), the method is capable of imaging
both short- and long-wavelength variations in velocity.

Conceptually, this new method is closely related to the itera
tive inversion method used in Hawley et al. (1981) for simulta
neously determining hypocenters of earthquakes and three-
dimensional (3-D) velocity variations. Their method is a gener
alization of the one-step general inverse method proposed in
Aki and Lee (1976).The technique presented here differs from
transmission problems (earthquake to receiver, see Anderson
and Dziewonski, 1984) in that rays start at the surface, reflect
off interfaces whose depths are to be determined, and return to
the surface. Another major difference is the much larger
number of model parameters in the reflection seismology prob
lem due to the increased density of data. This difference makes
this inversion method very computer-intensive. This method is
also similar to work done by Kjartansson (1980). While his
work also used reflected rays, it was limited to straight raypaths
and fixed reflector depths.

All these methods are closely related to x-ray computerized
tomography (CT) used in medical diagnosis. In CT the mea
sured data can be modeled as line integrals through a dis-
cretized density field along a straight raypath. An efficient
convolutional method exists for inverting these measurements
to obtain the spatial distribution of the density. Recent geo
physical applications of similar tomographic techniques have
included imaging between boreholes for site characterization
(Dines and Lytle, 1979) and mapping of large-scale changes in
the density of the oceans (Cornuelle, 1982). The general inverse
methods are computationally similar to CT, but they use
traveltimes to image slowness as a discretized field. The tomog
raphy problem for seismic reflection data is complicated by the
unknown depth to the reflectors, ray-bending effects which are
nonlinear, and raypath coverage which is irregular and has
limited view-angle coverage.

This paper discusses the following: the method of reflection
tomography as a two-dimensional (2-D) general inverse prob
lem; the inversion algorithm, illustrated using a synthetic ex
ample; the uniqueness of solutions to the inverse problem; and
finally an example of velocity and depth determination for a
seismic line where a large near-surface change in lateral velocity
is caused by permafrost.

PROBLEM FORMULATION

First we establish notation, and then formulate the problem
in a precise fashion. Let x be horizontal distance along the
earth's surface and let z be depth. In the region of interest, there
are reflectors whose depths as a function of position on the

surface are denoted by Z|(x), (x),..., Zp(x),..., Z„,(x). The
slowness in the region is modeled by a function w(x, z), which
represents the reciprocal of seismic velocity at points (x, z) in
the subsurface.

For computation, it is convenient to characterize the slow
ness and reflector depth functions by a finite set of parameters.
Those functions are then restricted to lie in a certain finite-

dimensional space of functions. The intent is to make the
dimension of that space sufficiently high that functions which
are not in the space, but may more accurately describe the real
Earth, can be well approximated by functions which do lie in
the space. However, the dimension must not be so high that the
problem of inverting the available data is hopelessly indetermi
nate.

Consider first the slowness function w(x, z). Divide the region
of interest into a matrix of rectangular boxes having columns
and rows (Figure I). The horizontal dimension of a box is
typically taken as four times the GDP spacing, with the vertical
dimension roughly twice that. The value of w(x, z) at the center
of the box in the klh row and cfth column is denoted

Elsewhere in the box the slowness is assumed to vary in such a
fashion that the gradient of velocity within that box is constant.
The value of slowness anywhere within the box can be obtained
from an interpolation formula which depends on and on

lhat is, on the values of slow
ness at the centers of adjacent boxes. This procedure is moti
vated by the ray-tracing scheme. Rays are traced from source to
receiver by a shooting method which uses the entrance angle at
each box and the velocity gradient to compute the radius of
curvature of an arc and the arclength in the box. This method is
described in greater detail in Appendix A.

The reflector depth functions Zp(x)are parameterized by the
depths at which the reflector intersects vertical boundaries of
successive columns of boxes. For reflector p these depths are

2/5*1,m

Fig. 1. Discretization of velocities and depths used in the
model earth.
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denotedZp„, 1 < p ^ n^,0 < m < n^. Away from box bound
aries, 2p(x)is regarded as a cubicspline function which interpo
lates the pointsspecified by theZp„.

Let M be the total number of parameters which characterize
this model of the earth. From the above discussion, it is clear
that

M = n^n. + n,in^ + 1).

It will prove useful to define an M-dimensional vector p having
the property that every parameter of the model appears as a
component of p. This can be done by reindexing the parame
ters: the first components of p are the and the last
n,(n, -f- 1)components are the Zp„.

In addition to the vector p, which Is the primary descriptor of
the model, some notation is needed to describe the data set of
reflection tomography. The data consist of two-way traveltime
measurements obtained from seismic recordings made on the
surface. Let there be n, shots with a maximum of rXg geophone
station locations per shot. The observed traveltime for a ray
which emerges from source /i, travels to reflector p, and returns
to receiver v is represented as T^p^, 1 < p < 1 < p < n,,
I ^ v 5 Hp. (In practice, every reflector will not necessarily
yield reflections on every geophone trace of sufiicient amplitude
to facilitate the picking of event traveltimes; for such reflectors,
the geophone index will remain below in some shot gathers.)
The total number of rays is denoted N, As was the case with the
parameters, it is convenient to renumber the data so the travel-
time for each ray appears as an entry in a single Af-component
vector. This vector of traveltime measurements is called .

For a particular choice of the parameter vector p, rays can be
traced through the model to yield a collection of traveltimes
which correspond to the same shot-receiver pairs that are rep
resented in the data. Indexing these traveltimes in a manner
analogous to that of traveltimes from the seismic line yields t{p),
an /V-componenl vector function of p.

The goal of reflection tomography is to find a model for
which the model traveltimes closely match the real traveltimes.
In more mathematical language, the problem can be posed as
follows. Let the residual vector r(p) be defined by r(p) =
—t(p). Double bars (|| • ||) denote the Euclidean norm of a

vector and prime denotes the transpose. The objective of to
mography is to choose p such that the quantity [|r(p)|| is
minimized, The solution of this problem is identical to that of
minimizing the mathematically more convenient function

= II r(p) IP = [t,i - t(p)]'[td - t(p)X (1)

The description of an algorithm to minimize (})(p) follows.

INVERSION ALGORITHM

To look for a parameter vector which minimizes {j)(p), we
have used an algorithm which has been used previously in
geophysical applications (Hawley et al., 1981). The procedure is
an iterative one whichstarts withan estimate p'*' of the solution
and then generates a new estimate based on a linearized
approximation to t(p) at p'*'. In the mathematics literature, this
approach is known as the Gauss-Newton method (Marquardt,
1963; Gill etal., 1981).

A necessary condition for a local minimum of (|)(p) is that at
the minimum,

V4>(p) = 0. (2)

If A(p) is the Jacobian matrix of t(p), that is, the matrix whose
i/th element is 51,then equation (2) implies

A'(p)[t{p)-tj=0. (3)

The algorithm actually attempts to find a solution of equation
(3). To understand how the procedure works, suppose p'*' is
known and it is desired to find p'*^". Let Ap = p'*^" —p'*',
a"" = A(p""). and r"" = r(p^*'). Consider the quantity
'̂(k)j(p<i:+ D) jf t(p"'+ D) isexpanded in a Taylor series about p'*',

we have

A'(fti[t(p(ft+i») _ t^-] ^ A'""A'̂ »Ap -

+ 0(||Ap||^). (4)

The vector Ap is chosen so that, to first order, the right-hand
side of equation (4) is zero. Since typically A''*'A'*' is either not
invertible or is, at best, very poorly conditioned, there are many
vectors Ap which can play such a role. The algorithm chooses
Ap such that

[A'""A<*' -h a(W"")^] Ap = (5)

where a is a real constant and W"" a weighting matrix which
will be discussedbelow. With Apchosen, p'** " is then simply

»(k+ 1) _ „(kl= p"" -h Ap. (6)

Suppose the algorithm outlined in equations (5)and (6)con
verges. Call the vector to which p"''converges p*. Then p* must
be a solution of equation (3). This followssince p" '̂ -> p*implies
Ap^ 0. So from equation (5),

A'(P*)r(P*) = lim = 0.

The vector p* is a solution regardless of how a or W'*' are
chosen, although both a and W'*'can affect the rate of conver
gence. However, if many solutions of equation (3) exist, the
values of a and W"*', as well as the choice of the initial model
p'®', determine which solution isobtained. Presumably all three
terms may also influence whether or not convergence occurs. If
the algorithm does converge, p* satisfies the necessary con
dition [equation (3)] for a local minimum, but there is no a
priori guarantee that it represents a global minimum.

In numerical tests it is observed that the residual decreases

for several (between three and five) Gauss-Newton steps; after
about five steps, changes in its value are sufficiently slow that
further iteration seems pointless. A useful measureof the algo
rithm's effectiveness is the quantity

£ = (l|r"" (7)

which represents the rms difference between the traveltimes
predicted by the model and those found in the data. Although £
may be as large as 50 ms initially, by the third or fourth
iteration it is often reduced to 5 ms, close to the sampling rate
of standard seismic data.

In the scheme outlined above, the Jacobian plays a dominant
role. A single row of the matrix consists of the derivatives of
the traveltime for a particular ray with respect to each of the
parameters in the model. The first of these terms are
slowness derivatives, and the rest are depth derivatives. Thus,
the matrix A'*' can be partitioned into two matrices A'" and



Tomographic Determination of Velocity
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priori guarantee that it represents a global minimum.

In numerical tests it is observed that the residual decreases
for several (between three and five) Gauss-Newton steps; after
about five steps, changes in its value are sufficiently slow that
further iteration seems pointless. A useful measure of the algo
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which represents the rms difference between the traveltimes
predicted by the model and thosefound in the data. Although £
may be as large as 50 ms initially, by the third or fourth
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whereA[J' is N x n^n^, and A '̂'' is N x n,(n, + 1).
How are the entries in A'*' calculated? First, since one ray

passes through relatively few boxes, many of the entries in a
row of are zero, and consequently A'*' is quite sparse.
Moreover, an argument based on Fermat's principle of least
time (see Appendix B)shows that the derivative with respect to
slowness in a particular box is approximately the pathlength in
that box. The depth derivative can also be obtained in closed
form involving terms readily available from the ray tracing (see
Appendix B).

The weighting matrix which serves to stabilize the
computation of Ap in equation (5),has been discussed by others
in a variety of contexts (Franklin, 1970; Wiggins, 1972). In the
present application it has the form

Wi'}

= lyW

where = (trace and = (trace
This choice serves to ensure that the unitless

parameter a will have a value near 1.0 at the point at which it
begins to affect significantly the solution of equation (5).

Despite the relative sparsity of A**', the large values of N and
M typical of seismic data (N ~ 4 x 10^ M ~ 2 x 10^) make
the determination of Ap in equation (5)a challenging task. The
numerical technique employed for inferrring Ap consists of a
Gauss-Seidel algorithm with successive overrelaxation (Varga,
1962), A considerable effort has been expended in optimizing
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the code for use with an array processor attached to a
UNIVAC 1100/84 mainframe.

To illustrate some of the ideas described, we present a com
putational example of reflection tomography. The example
consists of a simulation designed to demonstrate the effects of a
near-surface velocity anomaly. The simulated earth is shown in
Figure 2. The simulated region contains flat reflectors and
laterally homogeneous velocity, except in the uppermost layer,
where the velocity changes laterally from 7 272 ft/s to 8 890 ft/s.
The parameters of this simulated earth are denoted by p,argei •
Each box here is 880 ft long and 1 000 ft deep, with the total
number of parameters M = 2 203. (Also = 110, n, = 3, and
n. = 17.) The simulated data are obtained by tracing
N = 21 300 rays through this model. A single-shot gather of
rays striking one of the reflectors is shown in Figure 3.

Five Gauss-Newton inversion steps are employed in this
demonstration. The initial guess p'°', known as the "gray"
model, is similar to p,a,gei except that p^°^ contains no lateral
velocity anomaly. Figure 4 displays the difference between the
target slowness structure and the gray-model slowness struc
ture. Also shown are the reflector depths, which are identical for
both piargei ^nd p'®'. Thedifference between theslowness distri
butions of p'^'and p'°' appears in Figure 5. Figure 6 exhibits the
depth of the first reflector on an enlarged scale after one, three,
and five Gauss-Newton steps, respectively.

If this procedure worked perfectly, Figures 4 and 5 would be
identical, and the depth corresponding to p'^' in Figure 6 would
simply be constant at 5 000 ft. It is clear that in the solution
there is some coupling between the velocity anomaly and the
depth. Nonetheless, it is significant that the depth has been
correctly determined to within 40 ft. That the depth is deter
mined relatively accurately is shown by analysis of what is
"well-determined" and what is "poorly determined" in the
solution of equation (5).
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Fig. 2. Simulated earth model. Flat reflectors at 5 000, 10 000, and 15 000 ft. Velocities are laterally invariant except in the top

layer.
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THE EFFECTS OF LIMITED-ANGLE RAYS-
UNDETERMINED AND POORLY DETERMINED MODEL

FEATURES

There are limitations to the information about the subsurface
that can beinferred froma particularset of traveltime measure
ments, even if such measurements are exact. These limitations

are analyzed here for two problems, both of which are simpler
than the actual tomographic inversion specified above. Based
on experience from several numerical tests, it is found that the
limitations described by these simpler analyses accurately
characterize the results of the more general tomographic algo
rithm.
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Fig. 3. Raypaths from one shot to the top reflector traced through the model shown in Figure 2.
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The vector Apwhich is the solution of equation (5)is also the
vector that minimizes the quantity

(8)

The first term of expression (8) represents a linearized approxi
mation to Typically, there are many other choices of
Ap for which this first term is of comparable magnitude. It is
known that all of these vectors differ from each other by linear
combinations of those eigenvectors of that correspond
to small eigenvalues (Wiggins et al., 1976; Franklin, 1970).This
includes all elements in the null space of for which the
eigenvalues are zero, as well as a number of other components
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Fig. 4. Difference in slownesses between the simulated earth model shown in Figure 2and "gray" model for tomography.
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which in theory can be found by computing the "singular value
decomposition" (SVD) of (Golub and Reinsch, 1970; For-
sythe,et al., 1977). Unfortunately, the SVD of a matrix as large
as 4'*' is an extremely expensive computation. In what follows,
although two variations on this general theme are pursued,
SVD analysis of the large matrix is avoided.

In the first approach, after certain simplifying assumptions
are made, an exact specification is given of those parameters of
the model earth which cannot be determined from the data.
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This approach reveals the undetermined components in the
solution of equation (3), the original, nonlinear problem. In the
second approach, the most restrictive of the simplifying as
sumptions is relaxed, and a small model earth (151 parameters
and 499 rays) is constructed for which an SVD analysis is
feasible. The SVD analysis shows only those ambiguities that
appear in the solution of the first Gauss-Newton step [equation
(5)], but not necessarily in the full nonlinear problem. However,
in addition to revealing those components which are impossible
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Fig. 5. Difference between the simulated earth model and output model after five Gauss-Newton steps.
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Fig. 6. Depth to the first reflector after one, three, and five Gauss-Newton steps. "Correct" answer would be fiat lines at 5 000 ft.
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In the model examples considered, all the other singular
values arean order ofmagnitude larger than thevalues detailed
above, indicating that all other eigenfunctions of parameters
are relatively well determined. This relationship has also been
observed empirically by comparing target models with final
inversion solutions.

In summary, we found that the Jacobian matrix has a null
space corresponding to slowness variations in rows of boxes
with zero verticalmean.The null space also contains some edge
effects. Poorly determined quantities include linear slowness
variations in rows with zero vertical mean and reflector tilt with
a compensating linear slownessvariation.

The above results are derived for a much simpler inversion
problem than that encountered in the actual tomography algo
rithm.It is probablethat the ray-bendingand the discretization
using a constant velocity gradient, which characterize the real
algorithm, add information to the problem which is not taken
into account in the simple analyses. This additional infor
mation may change an "undetermined" quantity into a
"poorlydetermined" quantity, but it seems unlikely to alterthe
general picture which these studies establish of what can and
what cannot be inferred from tomography. Indeed, numerical
tests of the actual algorithm indicate that the indeterminancies
described here do obtain in practice.

to infer from the data, SVD also indicates which components
are well-determined and whichare poorly determined.

In both analyses, it is assumed that rays are straight, except
foran equal-angle reflection at oneofthe reflectors. It is further
assumed that the subsurface is discretized in boxes, with a
constant velocity in each box. In the first analysis, it is also
assumed that reflectors are flat and horizontal, so that only one
parameter is needed to characterize each of n, reflector depths.
In addition, it is supposed that at least two distinct rays exist
which are completely contained in one vertical column of
boxes. Under these restrictions, the following results are proven
in Appendix C.

(!) Thedepthsof the flat and horizontal reflectors can be
determined.

(2) Most of the velocity structure can be determined.
Average slowness between reflectors can be deter
mined. Lateral changes in slowness, including the
vertical location of these changes, can be determined.

(3) Part of the velocity structure cannot be determined.
Perturbations in slowness which are laterally con
stant and have zero-mean slowness between reflec

tors have no effect on the traveltime data and cannot

be determined. Assuming that each box has at most
one reflector in it, then the null space has dimension
n. —n^. Recall that n, is the number of horizontal
layers of boxes.

Several of the assumptions made in this first analysis are
rather restrictive. The SVD computations described next avoid
someof these assumptions. Specifically, reflectordepth is taken
to be a continuous piece-wise linear function with bends at box
boundaries, and a more realistic distribution of rays is con
sidered. The points below summarize the results of a number of
SVD calculations for a range of model choices.

There are singular engenfunctions with zero eigenvalues cor
responding to

(1) the n. —n, slowness perturbations described, and
(2) edge effects in slowness and reflector depths where

there is an absence of rays or there are very few rays.

There are singular eigenfunctions with moderately small ei
genvalues corresponding to

(3) more edge effects,
(4) linear variations in slowness in rows of boxes with

zero vertical mean between reflectors, and

(5) sloping slowness compensating for sloping reflectors.

Small singular values corresponding to point (4)suggest that
these variations in slowness are poorly determined. Similar but
slightly larger eigenvalues associated with point (5) suggest a
tradeoff between event dip across the whole model and a linear
variation in slowness. This effect is seen in the example present
ed in the "Inversion algorithm" section. Figure 6 shows an
inexact solution for depth which is characterized by a residual
dip in the reflector of about 40 ft. Although each nonlinear pass
of the inversion improves the depth estimate, the algorithm is
converging to a depth function with a residual error in the slope
of the reflector.

CONVENTIONAL AND TOMOGRAPHIC PROCESSING OF
A SEISMIC LINE OVER A PERMAFROST BODY

We now compare conventional and tomographic processing
of a seismic line. The line exhibits an abrupt lateral change in
velocity due to permafrost. Proper depth interpretation was an
important exploration problem on this line.

Figure 7 is a seismic cross-section (line A)from the Beaufort
Sea. Shown in red is an interpretation of five major reflection
events, labeled El through E5, which extend across most of the
section. Near-surface reflection anomalies between CDPs 80

and 125are due to permafrost. A time pull-up of events El and
E2 is observed under the permafrost at the left end of the figure
indicating a high-velocity, near-surface feature.

Further evidence for this interpretation comes from the
stacking velocity analysis shown in Figure 8. This figure is a
contour plot of stacking velocities after smoothing with a
22-CDP filter whose weights are given by a triangle function.
There is a long-wavelength lateral gradient in velocity with the
left end of the line faster than the right. The gradient is very
strong at the surface and decreases to a rather small effect
below 2.0 s, Superimposed on this gradient is a stacking-
velocity anomaly from CDP 60 to CDP 190. The center of the
anomaly is at CDP 125, corresponding to the edge of the
shallow permafrost feature. The sense of the anomaly—high-
velocity swing to the right and low-velocity swing to the left of
the edge of the permafrost—corresponds to an abrupt lateral
change to lower velocity from left to right.

The influence of an abrupt lateral velocity change on the
traveltime and the stacking velocity for a reflection event below
the permafrost is depicted schematically in Figure 9. In this
figure the traveltime effect of the high-velocitylayer is approxi
mated by a static speed up. Note that the influence of the
anomaly extends for a distance equal to a cable length centered
on the edge of the layer.

To illustrate the effect of the stacking-velocity anomaly on
depth conversion, the velocities shown in Figure 8 can be used
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The exploration importance of the correct depth analysis is
noted by examining event E4. An apparent anticline exists
between CDPs 170and 300 on E4 which could be interpreted
as a favorablestructure. The closure of that structure on the left
end of the line is due to the synclinal feature around CDP 165.
This raises thequestion ofwhether this closure is real or just a
residual permafrost effect.

To answer the question, the five events discussed previously
were used in a tomographic analysis. Traveltimes as a function
of offsetweredigitized on shot gathers displayed on a television
screen at an expanded timescale. The digitizing waschecked by
displaying these time picks on both CDP and offset gathers.
Data quality was generally good and the five events were easy
to follow on the shot gathers. In the few areas where the data
were noisy, or the events ambiguous due to faulting, no time
picks were made.

In this example, the first-guess model chosen consisted of
velocities that did not vary laterally and depths which were
constant except at faults. Jump discontinuities were input at
CDP positions of faults which were interpreted on the time
section (Figure 7).The theoretical times, obtained by ray trac
ing the first-guess model, differ from the data times by an rms
average of 46 ms across the line.

The tomography algorithm attempts to minimize the differ
ence between the theoretical times and the data times by modi
fying the velocities and depths of the model. Each iteration
produces a new model with a corresponding set of theoretical
times. Table 1 shows the misfit between the data times and the

to convert the time sectionof Figure 7 to depth (Figure 10). The
velocity anomaly is translated into a depth anticline centered
around CDP 100 and a depth syncline centered around CDP
165 for all the events on the section. Deeper events are distorted
more than shallow ones due to the increase in the size of the

velocityanomaly with depth.
Typically, a longer smoothing function would be used to

smooth the stacking velocities for depth conversion, and thus
reduce the anomaly by averaging the negative and positive
excursions. Further, having recognized the permafrost feature,
most processors would attempt to correct for the time distor
tion it introduces by doing a statics analysis. The combination
of statics corrections and long-wavelength velocity smoothing
will reduce the influence of the permafrost on the inferreddepth
to the reflectors below it.

This conventional processing approach has two short
comings. First, the permafrost does not produce purely static
effects. That is, different events at the same offset have different
delays (or speed-ups) due to raypath bending effects. Second,
the lateral extent of the permafrost is a large fraction of a cable
length. Solving for long-period delays is difTicuit with conven
tional residual-statics programs (Wiggins et al., 1976).

Figure 11 is the depth section after such a conventional
processing sequence. A standard residual-statics program
(Taner et al., 1974) was used to estimate static delays after
moveout with a very slowly varying velocity function. These
delays were then applied to the traces before moveout. A subse
quent velocityanalysis with a one-quarter cable-length triangu
lar smoother was used to stack the data. The same velocity
measurements, after the application of a one-cable-length
smoother, were used to convert the stacked section to depth.

The red lines in Figure 11 show the depth positions of the
events interpreted on the time section (Figure 7). Much of the
depth distortion due to the velocity anomaly has now been
removed. However, there are still indications of residual per
mafrost effects. A depth syncline persists for events E4 and E5
near CDP 165. There is also a considerable pull-up under the
permafrost. This effect is seen most easily on event El.

COP
100 200

Table 1. Root-mean-square misfit between data and theoretical times
(ms), equation (7).

300

First-guess model
First iteration
Second iteration
Third iteration
Fourth iteration
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46.2
6.3
5.4
5.1
5.1

^-0.5

- 1.0

- 2.0

- 3.0

• 4.0

Fig. 8. Contour plot of stacking velocities for line A. A stacking-velocity anomaly can be seen on the left side of the line.
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done considerably better than the conventional processing as
indicated bytheimproved depth ties shown inTable2.

Some general conclusions can be drawn from this tomo
graphic analysis. Traveltimes obtained by tracing rays through
models constructed bythis method fit the measured traveltime
data to approximately 5 ms rms. This result is within the error
in picking the recorded data. Significant shallow velocity vari
ations were imaged in areas where they were predicted by other
evidence (shallow waveform character, stacking-velocity anom
aly). Depth estimates obtained indicated little or no structural
closure on anyof theevents. The depthsdetermined by tomog
raphy tied significantly better at theline intersection, indicating
that although some indeterminancy remains, tomography has
done a betterjob of distinguishing velocity effects from depth
than the conventional processing scheme discussed earlier.

theoretical times for four iterations.

It is evident from Table 1 that the tomography algorithm
does modify the model to reduce significantly the misfit and
that most of the reduction occurs in the first iteration.

Figures 12 and 13 show thetomography model after the first
and fourth iterations, respectively. The slownesses (plotted in
color) are the differences between the original gray model and
the result of the corresponding iteration. Red areas indicate
where velocity has been increased and green where it has been
decreased. Thedepthsto events are represented bydottedblack
lines while theoriginal gray-model depths aresolid lines. Multi
ple dotted lines occur for each event where faults have been
interpreted. The highlighted dots show the estimated event
depth across the line.

Several interesting velocity features are seen in thesemodels.
There is a fast, shallow zone between CDPs 80 and 120which
corresponds to the range ofCDPs where thenear-surface seis
mic character indicates permafrost. The fast area is smeared
down to the left and covers an area of the line greater than a
focused image of the permafrost.This is due to both the limited
vertical resolution of velocity between events and to the influ
ence of the edge of the line. Velocities in the top layer tend to
decrease to the right, corresponding to the lateral gradient
observed on the plot of stacking velocities (Figure 8). The
leftmost end of the line shows a region of velocity increase
which corresponds to the edge of the data; this is probably an
edge effect. The two deepest layers show velocity increases to
the right. These increases may be due to lateral changes in
lithology.

What distinguishes the results of the first iteration from the
fourth? Most of the same velocity and depth features appear in
both. The main differences are small, detailed changes in the
parameters. One change is the improved resolution of the per
mafrost feature in the upper left end of the model.

To display the tomography results in a form comparable to
the conventional processing, the tomographic velocity field is
used to create the depth section shown in Figure 14. The depth
of events in this display is obtained from the tomographic
velocity field only. No direct use is made of the depth parame
ters. However, examination of the depth section indicates that
the depths to the events are essentiallythe same as the estimates
from tomography. This implies that the velocity-depth model
found by tomography gives vertical-incidence traveltimes con
sistent with the stacked data. The red lines on this figure are
then essentially the depth estimates from tomography.

The pull-up which lies under the permafrost feature, and
which persists after conventional processing(Figure 11), is now
corrected. There is also little or no evidence for structural

closure on the left end of the line for the deeper events. We
suggest that this apparent structure, present after conventional
processing, is a residual permafrost effect which has now been
corrected.

Similar analyses, both conventional and tomographic, were
performed on a cross line (line B). The position of the line
intersection is marked on the stacked section (Figure 7).Table 2
compares the depth for the first four events at the line intersec
tion. The interpretation of the depth to the fifth event on Figure
11is too ambiguous to allow a meaningful comparison.

Note that in both analyses, line A is consistently deeper than
line B indicating that the depth mistie is not due to random
error. It is likely that tomography has not completely removed
systematic velocity-depth effects in the data. However, it has

CONCLUSION

The technique presented uses a general inverse method to
estimate velocities and depths from CDP seismic data. The
technique attempts to produce a model of both the velocity
field and depths to selected reflectors which minimizes the
discrepancies between traveltimes derived from tracing rays
through the model and those measured from the data. The
minimization is achieved by using a Gauss-Newton method to
modify a first-guess model and produce a series of model iter
ates, The first-guess model is constructed manually from well
information or from the results of conventional seismic pro
cessing. Use of this technique on seismic data indicates that
first-guess models with rms misfits in the range of 20to 100 ms
can be modified to produce models with misfits of approxi
mately 5 ms in three to five Gauss-Newton steps.

An investigation of the uniquenessof the models reveals that
most features of velocity and depth are determined. However,
certain velocity features are undetermined while others are
determined relatively poorly. The only degradation in depth
resolution is a possible small overall tilt of reflectors.

The tomographic analysis was performed on a pair of inter
secting CDP lines in an area with significant lateral-velocity
variations due to the presence of permafrost. The technique
produced models which fit thedata measurements from thetwo
lines to within 4.8and 5.1 ms, respectively. The modelsincluded
significant shallowvelocity variations in areas where theywere
predicted by other evidence. The tomographic depth estimates
at the intersection point agreed significantly better than the
corresponding depth estimates derived from conventional pro
cessing.
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Table 2. Depth comparisonat the lineintersection.

919

Tomographic processing Conventional processing

Event Line A Line B Difference Line A Line B Difference

El 5 626 5 587 -t-39 5 480 5 360 4-120

E2 7 299 7 230 -1-69 7 280 7 080 4-200

E3 9 757 9 713 4-44 9 920 9 600 4-320

E4 11 912 11 814 4-98 11 880 11 620 4-260

Average = 4-62.5 Average = 4-225
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APPENDIX A

METHOD OF TRACING RAYS

During the development of seismic tomography we utilized
two different ray-tracing methods. Our experience indicates
that the difference in the results is principally one of efffciency
and the ability to resolve features on the scale of one or two
boxes. Our initial method was an iterative one based upon the
analytic approach given in Telford et a). (1976). However, the
ray-tracing method which we currently use for maximum ef
ficiency and accuracy is presented in a companion paper
(Langan et al., 1985). In this appendix we give the analytic
approach and its iterative approximation.

The model of the earth used in tomography consists of
rectangular boxes, with each box having a known slowness
specified at the center and a constant gradient of velocity across
the box. The components of the velocity gradient in each box
are calculated using the central-difference approximation. For
example, the x-component of the velocity gradient in the ith
box is

X, = (1/Wf+ J - l/w,-_ ,)/(2Ax), (A-1)

where w, is the slowness in the Jth box. Ax is the x-dimension of
the box, and i increases in the x-direction.

Within a single box, it is known that the path of a ray is a

circular arc. Thus, we have constructed a model where ray
bending occurs within boxes and not at box boundaries. There
fore we can use simple geometry to express the orientation and
traveltime of the ray in the box as a function of position, initial
orientation, velocity gradient, and slowness at the center of the
box. Telford et al. (1976) gave the expressions for the case where
velocity increases linearly with depth only. We present similar
equations for the more general case of an arbitrary direction for
the gradient. In this case the velocity field is defined by

Viz) =Vo + X'r, (A-2)

where Vq is the velocity at the origin, Xis the velocity gradient,
and r is the position vector. For slowness, equation (A-2) is
written

w(r) = l/(l/wo 4- X• r), (A-3)

where Wq is the slowness at the origin.
Suppose a ray enters a box at the point (x = 0, r = 0) at an

angle of entry 4)o measured with respect to the vertical. Let the
ray emerge from the box at (x, z) with angle 4). Then

<|) = arccos [cos (t)Q —x/R], (A-4)
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and

4) = arcsin [sin 4)0 + zjK],

where R is the radius of curvature givenby

R = 1/1 Wo Xsin (4)0 - v) I.

and \j/ is the angle the gradient makes with the vertical.
These equations can be used to find the position of the ray

and its angle of exit from the box. For instance, if the ray exits
from below, the depth of exit r is known, and 4> and x then
follow from equations (A-5) and (A-4), respectively. (The value
of Xobtained in this way must lie within the box; if it does not,
the assumption that the ray exits from below is in error. In this
case, it is really 4* and z that must becomputed with known x.)
With the raypath determined, thepathlength s isgiven by

Bishop et al.

(A-5)

(A-6)

s = lK(4)-4»o)l- (A-7)

The traveltime is then approximated as the product of path
length and slowness at the center of the box.

Because this analytic approach is computationally slow, we
performed our initial studies with a less precise, iterative
method which approximates it. A tangent to the circular path is
constructed at the entry point. The length of this tangent in the
box is used as an initial estimate for arc length. An estimate of
the change in ray orientation across the box is calculated from
equation (A-7). An estimate of the position of the chord to the
arc is constructed from this angle. The length of this chord is
then used to calculate a new estimate of the arc length. If the
chord and tangent exit different sides, this process is repeated.

APPENDIX B

CALCULATION OF SLOWNESS AND DEPTH DERIVATIVES

Entries in the Jacobian matrix A"*' are of two kinds: deriva
tives of traveltime with respect to slowness, and derivatives of
traveltime with respect to reflector depth. Both are computed
immediately following the computation of the traveltimestfp'*').
Thus, the raypaths through the model are known when the
derivatives are computed.

In the ray tracing used here, rays are continuous at box
boundaries and refract inside boxes by moving along curvi
linear paths determined by the slowness gradient. However, for
simplicity the discussion will begin with an examination of the
calculation of the slowness derivatives in a medium where the

gradient is zero inside each box, and rays refract by bending at
box boundaries. Also, reflectors will consist of piece-wise linear
functions rather than cubic splines. Some discussion of the
problem of computing the derivatives in the more general case
will then follow.

From Format's principle, the raypath through the medium is
that path which exhibits the minimum traveltime between the
fixed source and receiver. The minimum is taken over all paths
which lie in a certain "regular neighborhood" (Born and Wolf,
1959), and it is assumed that in that neighborhood there is only
one such path. This guarantees that the traveltime is a true
minimum rather than just an extremum.

In the finite-dimensional medium considered here, the path
through a single box is simply a straight line. Moreover, any
possible path through the entire medium can be specified by
prescribing the depths and an additional finite set of indepen
dent path parameters. The latter will be denoted by the vector q
with components , n = 1, 2,..., y. (For example,one specific
q„might be the distance from a box corner to the point at which
the ray enters or leaves the box, or the distance from a fixed
point on a reflector to the point of reflection.)

Now define a real function /,(q, p) to be the traveltime for the
j'th ray along a path through the medium specified by q. From
Fermat's principle, the true raypath traveltime f((p) is given by

ti(p) = minX(q, p).
1

(B-1)

The minimum in equation (B-1) is taken for q in a certain
domain in 01''. Assume that the parameterization is such that
the minimum does not occur on the boundary of the domain,
and suppose that inside that domain the function/j is smooth.
It follows that at the minimum

«= 1, 2, 3 ...y. (B-2)

Let the vector of values of the components of q at the
minimum be denoted by q*. The equations (B-2) provide an
implicit relationship between q* and p. Assume it is possible to
express this dependence as an explicit function of p. This is
equivalent to the assumption that the matrix with entries

js positive definite, and not just semidefinite, at the
minimum. Thus at the minimum

q* = q*(p), (B-3)

and equation (B-1)can be written

ri(P)=/i(q*(p), p)- (B-4)

Differentiating equation (B-4) with respect to pj, evaluating all
derivatives at the minimum, and making useofequations (B-2)
yields

,=q./ 5Pj SPj dpj
ifi= y (Ml
^Pj «=i \dq„

(B-5)

This shows that it is not necessary to know how the path
parameters q* depend upon the medium parameters in order to
find dti/dpj. To ascertain the effects of a small perturbation in
slowness, only the original raypath (corresponding to the un
disturbed parameters anddepths) need beknown. Similarly, for
a perturbation in depth, the path required is the one specified
by the unperturbed q*and the newdepth.

Obtaining closed-form expressions for the derivatives is now
straightforward. The traveltime in a box is the product of the
slowness and the path length . The latter is a function of
some oftheq* (and, ifthebox contains a reflector, oftwo depth
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parameters), but it does not depend upon any of the slowness
parameters. Therefore,

where the sum is taken over all boxes through which the ray
passes. Using = pj inequation (B-5) thengives

ar,
—

(B-7)

For the depth derivative calculation, let the reflector pass
through Zp,„_i) and (x„,ZpJ, and let the point of
reflection be {x^, Z„), with x„_, ^ x^ ^ x„, and Zp „,_i ^
Zn ^ Zp„ (see Figure B-1). Tocompute dti/dZp„, it isnecessary
to evaluate the increase in path length As due to an increase in
depth AZp„ along a path characterized by the same q* parame
ters as the unperturbed route. Consider the case where the q
parameters represent the distance from a box corner to the
point of entry into or exit from that box, or the distancefrom
(x„_,, Zp,„_,) to (xr, Zft). Then the new path is identical to
the original raypath except in the box containing the point of
reflection. In that box, although the reflector is rotated clock
wise, the point of entry of the new path into the box, the point
of exit from the box, and the distance from (x„_i, Zp „_i) to
the reflection point must remain intact. Note that such a path
differs from the actual path taken by a ray which reflects from
the downward-rotated reflector. The proof demonstrates that
the true raypath need not be known, because the difference
between the traveltime along it and the traveltime along the
path described is at most of second order.

Let 0 be the angle between the incident ray and a line normal
to the reflector passing through (x^, Zr). The reflector is in
clined with respect to the horizontal by an angle P = tan"^
{Zp„-Zp.„_i)/Upn->:m-i)- Suppose a vertical line through
{xr,Zh) intersects the perturbed reflector at (x„, Z„-I-Ad).
Referring to Figure B-1, it is clear that

As = 2Ad cos p cos 0,

and furthermore that

Ad = AZp„(Xii - x„_ i)/(x„ - x„. i).

Thus, if the box has slowness , the depth derivative is given
by

(B-8)

(B-9)

Fig. B-1. Calculation of depth derivative.

Ji
5Z„„

= cos P cos 0
XR-X„.i

X„ — x„_,
(B-10)

As noted, these calculations pertain to a simplified version of
ray tracing. In practice the ray tracing employed is that de
scribed in Appendix A.Nonetheless, these equations are used as
shown here. The justification for this procedure ultimately lies
in the success of the inversion algorithm; even with such sim
plifying assumptions, the residual Is reduced to acceptable
levels.

APPENDIX C

DETERMINED AND UNDETERMINED QUANTITIES

Appendix C gives a proof of statements made earlier regard
ing the determination ofdepth and slownessin a model earth in
which ray paths are straight, reflectors are flat, and the gradient
of slowness in each box is zero. (Slowness in adjacent boxes
may diflfer; that is, this is not a restriction to laterally homoge
neous models.) It is assumed that traveltime measurements for
the model earth are available from sources and receivers placed
at locations specified as necessary below. For simplicity, it is
also assumed that reflectors lie on horizontal boundaries be
tween boxes.

That the depth of each reflector is uniquely determined by
the data can be proven as follows: consider a ray in a single

column of boxes striking reflector p at depth Zp (Figure C-1).
Let the distance between shot and receiver be 2Ax, let the
round trip traveltime be and let 0i be the angle of incidence
at which the ray encounters the reflector. Similarly, let 2Ax2,
tj, and 02 denote the analagous quantities for a second ray in
the same vertical column of boxes. Then,

and

sec 01

= sec 02,

(C-1)

(C-2)
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where the sum is over the slowness in the column of boxes

which contains the rays. Hence,

Zl + Ax?t? sec^ 0,

sec^ 0,
_ p

Zl + Ax?'
(C-3)

and, consequently,

(t?Ax? - tjAx?)
(C-4)

Thus the depth of each reflector is uniquely determined.
What can be said about the determination of the slowness

parameters in this model? With the reflector depths inferred,
they can be regarded as fixed, and in that case the traveltime
function t(p) can be considered to depend only on the n^rij
slowness parameters. The straight-ray approximation makes
t(p)a linear function of the slowness parameters p.Thus t(p) can
be written as

t(p) = Ap, (C-5)

where the ijth entry in the x M matrix 4 is the path length of
ray i in box j. If the data vector for this system is , then p must
satisfy the equation

t, = Ap. (C-6)

Suppose one solution of equation (C-6) is p = p*. If there is
another solution p = p* + Ap,then Apis such that

\ ^'

1 I 1

rTQ J
J ^ /

Tr /
! 1 /

11J
'

dz

Fig. C-I. Determination of depth in the case of straight rays
and a flat horizontal reflector.

AAp = 0, (C-7)

that is, Ap is a member of iV(A), the null space of A. It is easy to
show that N{A) is not empty. In particular, one element of this
space consists of a slowness distribution Ap which is laterally
homogeneous and has the properly that the sum of the slow
ness components in a single vertical column of boxes above a
reflector is zero. With tig reflectors and n. rows of boxes, the
dimension of iV(A) is clearly at least n, —tig.

With certain distributions of rays, the dimension of the null
space may be much larger than n^- rig. However, there is at
least one finite set of rays for which no other elements in A^(A)
exist. This is proven by exhibiting a set of rays for which the
row space of A has dimension M —(n^ —tig). The null space of
A, which is the orthogonal complement of the row space, then
has dimension at most n. — rig.

A collection of rays having this property is most easily de
scribed in connection with a specific example, such as that

C2.I

C2.2

C2.3

ELEMENTS OF SPAN OF ROWS OF A

0 \ 1' 0

0 0

0 A/ 0 0

0
• h 0

0
• '

0

0
• 1' 0

0 0 0 0

0 0 0 0

0 1 -1 0

Fig. C-2. Elements of the row space of 4-
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numberof linearly independentvectors for this ray distribution
is

n^(n^ - I) + ng = M - (n, - n«). (C-8)

shown in Figure C-2. Here, = 3, = 1, n, = M = 12.
The numbers in each box of Figures C-2a and C-2b are pro
portional to the entries in that row of A which corresponds to
the particular ray shown. The difference between these two
rows, which is also in the row space, is shown in Figure C-2c.
All the vectors seen in Figure C-3 except the last can be
generated in this fashion. This yields a total of —1) lin
early independent vectors. In addition, using one ray in each
column of boxes, elements in the row space of the type seen in
the last diagram of Figure C-3 can be created. There is one such
vector corresponding to each of the reflectors. Thus the total

Hence the null space has dimension n. —tig.
Note that elements in the null space affect neither the average

slowness between reflectors nor the lateral change of slowness
in a single row of boxes. This is the basis for the statements
made in the discussion of effects of limited-angle rays in the
text.

LINEARLY INDEPENDENT ELEMENTS OF SPAN OF ROWS OF A

1 -I 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 -i 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 -1 0 0

0 1 -1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 -1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 -1 0

1 1 1 1

1 I 1 1

1 1 1 1

0 0 1 -1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 -1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 -1

Fig. C-3. Linearly independent elements which span the row space of A.




